师资队伍

当前位置: 网站首页 > 师资队伍 > 副教授 > 正文

李静

发布时间 :2021年11月19日来源 : 浏览量 :


联系方式

lijing2017@cufe.edu.cn

毕业院校

2021.06毕业于中国人民公安大学,信息技术与网络安全学院,获工学博士学位

工作经历

2021.09 — 2023.12 太阳成集团tyc9728 讲师

2024.01— 至今 太阳成集团tyc9728 副教授

主讲课程

《数据挖掘与深度学习》、《人工智能基础与应用》、《Python程序设计》

研究方向

计算机视觉:多模态图像融合、目标识别、视频图像侦查等

遥感与地理信息系统:遥感图像处理、遥感应用、地理信息空间分析

学术成果

1.Jing Li,Yang B, Bai L, et al. TFIV: Multigrained Token Fusion for Infrared and Visible Image via Transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023.72.

2.Jing Li; Jianming Zhu; Chang Li; Xun Chen; Bin Yang; CGTF: Convolution-Guided Transformer for Infrared and Visible Image Fusion, IEEE Transactions on Instrumentation and Measurement, 2022, 71.

3. Jing Li; Hongtao Huo; Chang Li; Renhua Wang; Qi Feng; AttentionFGAN: Infrared and Visible Image Fusion Using Attention-Based Generative Adversarial Networks, IEEE Transactions on Multimedia, 2021, 23: 1383-1396. (ESI高被引)

4. Jing Li; Hongtao Huo; Chang Li; Renhua Wang; Chenhong Sui; Zhao Liu; Multi-grained Attention Network for Infrared and Visible Image Fusion, IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12.

5. Yang, B., Mao, Y., Liu, L., Liu, X., Ma, Y., Li, J.(通讯作者). From trained to untrained: A novel change detection framework using randomly initialized models with spatial–channel augmentation for hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14.

6.Jing Li; Hongtao Huo; Kejian Liu; Chang Li; Infrared and Visible Image Fusion Using Dual Discriminators Generative Adversarial Networks with Wasserstein Distance, Information Sciences, 2020, 529: 28-41.

7.Jing Li; Hongtao Huo*; Kejian Liu; Chang Li; Shuo Li; Xin Yang; Infrared and Visible Image Fusion via Multi-discriminators Wasserstein Generative Adversarial Network, 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, Florida, USA, 2019

科研项目

国家自然科学基金青年项目, 2023-2025, 主持;

高分辨率对地观测重大专项《高分公安XX应用示范系统》2015-2017,参与;

高分辨率对地观测重大专项《敏感地区XX技术研究》2018-2021,参与;

军民融合《XXX应用示范》2019-2021,参与;

公安部技术研究计划《无人区XX技术研究》2018-2020,参与;

版权所有© 太阳成集团(tyc9728-VIP认证)-Online Platform

学院南路校区地址:北京市海淀区学院南路39号 邮编:100081

沙河校区地址:北京市昌平区沙河高教园区 邮编:102206 京ICP备05004636号 京公网安备110402430071号